Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; : e0403123, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738925

ABSTRACT

STW 5, a blend of nine medicinal plant extracts, exhibits promising efficacy in treating functional gastrointestinal disorders, notably irritable bowel syndrome (IBS). Nonetheless, its effects on the gastrointestinal microbiome and the role of microbiota on the conversion of its constituents are still largely unexplored. This study employed an experimental ex vivo model to investigate STW 5's differential effects on fecal microbial communities and metabolite production in samples from individuals with and without IBS. Using 560 fecal microcosms (IBS patients, n = 6; healthy controls, n = 10), we evaluated the influence of pre-digested STW 5 and controls on microbial and metabolite composition at time points 0, 0.5, 4, and 24 h. Our findings demonstrate the potential of this ex vivo platform to analyze herbal medicine turnover within 4 h with minimal microbiome shifts due to abiotic factors. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products, such as 18ß-glycyrrhetinic acid, davidigenin, herniarin, 3-(3-hydroxyphenyl)propanoic acid, and 3-(2-hydroxy-4-methoxyphenyl)propanoic acid occurred. For davidigenin, 3-(3-hydroxyphenyl)propanoic acid and 18ß-glycyrrhetinic acid, anti-inflammatory, cytoprotective, or spasmolytic activities have been previously described. Notably, the microbiome-driven metabolic transformation did not induce a global microbiome shift, and the detected metabolites were minimally linked to specific taxa. Observed biotransformations were independent of IBS diagnosis, suggesting potential benefits for IBS patients from biotransformation products of STW 5. IMPORTANCE: STW 5 is an herbal medicinal product with proven clinical efficacy in the treatment of functional gastrointestinal disorders, like functional dyspepsia and irritable bowel syndrome (IBS). The effects of STW 5 on fecal microbial communities and metabolite production effects have been studied in an experimental model with fecal samples from individuals with and without IBS. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products with reported anti-inflammatory, cytoprotective, or spasmolytic activities was observed, which may be relevant for the pharmacological activity of STW 5.

2.
FEBS J ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38555566

ABSTRACT

This Review aims to coalesce existing knowledge on the human archaeome, a less-studied yet critical non-bacterial component of the human microbiome, with a focus on its interaction with the immune system. Despite a largely bacteria-centric focus in microbiome research, archaea present unique challenges and opportunities for understanding human health. We examine the archaeal distribution across different human body sites, such as the lower gastrointestinal tract (LGT), upper aerodigestive tract (UAT), urogenital tract (UGT), and skin. Variability in archaeal composition exists between sites; methanogens dominate the LGT, while Nitrososphaeria are prevalent on the skin and UAT. Archaea have yet to be classified as pathogens but show associations with conditions such as refractory sinusitis and vaginosis. In the LGT, methanogenic archaea play critical metabolic roles by converting bacterial end-products into methane, correlating with various health conditions, including obesity and certain cancers. Finally, this work looks at the complex interactions between archaea and the human immune system at the molecular level. Recent research has illuminated the roles of specific archaeal molecules, such as RNA and glycerolipids, in stimulating immune responses via innate immune receptors like Toll-like receptor 8 (TLR8) and 'C-type lectin domain family 4 member E' (CLEC4E; also known as MINCLE). Additionally, metabolic by-products of archaea, specifically methane, have demonstrated immunomodulatory effects through anti-inflammatory and anti-oxidative pathways. Despite these advancements, the mechanistic underpinnings of how archaea influence immune activity remain a fertile area for further investigation.

3.
Microbiome ; 12(1): 49, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461313

ABSTRACT

BACKGROUND: Aronia melanocarpa is a berry rich in polyphenols known for health benefits. However, the bioavailability of polyphenols has been questioned, and the individual taste acceptance of the fruit with its specific flavor varies. We recently observed substantial differences in the tolerability of aronia juice among healthy females, with half of the individuals tolerating aronia juice without complaints. Given the importance of the gut microbiome in food digestion, we investigated in this secondary analysis of the randomized placebo-controlled parallel intervention study (ClinicalTrials.gov registration: NCT05432362) if aronia juice tolerability was associated with changes in intestinal microbiota and bacterial metabolites, seeking for potential mechanistic insights into the impact on aronia polyphenol tolerance and metabolic outcomes. RESULTS: Forty females were enrolled for this 6-week trial, receiving either 100 ml natural aronia juice (verum, V) twice daily or a polyphenol-free placebo (P) with a similar nutritional profile, followed by a 6-week washout. Within V, individuals were categorized into those who tolerated the juice well (Vt) or reported complaints (Vc). The gut microbiome diversity, as analyzed by 16S rRNA gene-based next-generation sequencing, remained unaltered in Vc but changed significantly in Vt. A MICOM-based flux balance analysis revealed pronounced differences in the 40 most predictive metabolites post-intervention. In Vc carbon-dioxide, ammonium and nine O-glycans were predicted due to a shift in microbial composition, while in Vt six bile acids were the most likely microbiota-derived metabolites. NMR metabolomics of plasma confirmed increased lipoprotein subclasses (LDL, VLDL) post-intervention, reverting after wash out. Stool samples maintained a stable metabolic profile. CONCLUSION: In linking aronia polyphenol tolerance to gut microbiota-derived metabolites, our study explores adaptive processes affecting lipoprotein profiles during high polyphenol ingestion in Vt and examines effects on mucosal gut health in response to intolerance to high polyphenol intake in Vc. Our results underpin the importance of individualized hormetic dosing for beneficial polyphenol effects, demonstrate dynamic gut microbiome responses to aronia juice, and emphasize personalized responses in polyphenol interventions.


Subject(s)
Gastrointestinal Microbiome , Photinia , Female , Humans , Gastrointestinal Microbiome/genetics , Photinia/chemistry , Photinia/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Polyphenols/chemistry , Polyphenols/metabolism , Metabolome , Lipoproteins/metabolism
4.
Microbiol Spectr ; 12(2): e0154923, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38193689

ABSTRACT

The partial or complete loss of the sense of smell, which affects about 20% of the population, impairs the quality of life in many ways. Dysosmia and anosmia are mainly caused by aging, trauma, infections, or even neurodegenerative disease. Recently, the olfactory area-a site containing the olfactory receptor cells responsible for odor perception-was shown to harbor a complex microbiome that reflects the state of olfactory function. This initially observed correlation between microbiome composition and olfactory performance needed to be confirmed using a larger study cohort and additional analyses. A total of 120 participants (middle-aged, no neurodegenerative disease) were enrolled in the study to further analyze the microbial role in human olfactory function. Olfactory performance was assessed using the Sniffin' Stick battery, and participants were grouped accordingly (normosmia: n = 93, dysosmia: n = 27). The olfactory microbiome was analyzed by 16S rRNA gene amplicon sequencing and supplemented by metatranscriptomics in a subset (Nose 2.0). Propidium monoazide (PMA) treatment was performed to distinguish between intact and non-intact microbiome components. The gastrointestinal microbiome of these participants was also characterized by amplicon sequencing and metabolomics and then correlated with food intake. Our results confirm that normosmics and dysosmics indeed possess a distinguishable olfactory microbiome. Alpha diversity (i.e., richness) was significantly increased in dysosmics, reflected by an increase in the number of specific taxa (e.g., Rickettsia, Spiroplasma, and Brachybacterium). Lower olfactory performance was associated with microbial signatures from the oral cavity and periodontitis (Fusobacterium, Porphyromonas, and Selenomonas). However, PMA treatment revealed a higher accumulation of dead microbial material in dysosmic subjects. The gastrointestinal microbiome partially overlapped with the nasal microbiome but did not show substantial variation with respect to olfactory performance, although the diet of dysosmic individuals was shifted toward a higher meat intake. Dysosmia is associated with a higher burden of dead microbial material in the olfactory area, indicating an impaired clearance mechanism. As the microbial community of dysosmics (hyposmics and anosmics) appears to be influenced by the oral microbiome, further studies should investigate the microbial oral-nasal interplay in individuals with partial or complete olfactory loss.IMPORTANCEThe loss of the sense of smell is an incisive event that is becoming increasingly common in today's world due to infections such as COVID-19. Although this loss usually recovers a few weeks after infection, in some cases, it becomes permanent-why is yet to be answered. Since this condition often represents a psychological burden in the long term, there is a need for therapeutic approaches. However, treatment options are limited or even not existing. Understanding the role of the microbiome in the impairment of olfaction may enable the prediction of olfactory disorders and/or could serve as a possible target for therapeutic interventions.


Subject(s)
Neurodegenerative Diseases , Olfaction Disorders , Middle Aged , Humans , Smell/physiology , Anosmia/complications , Quality of Life , RNA, Ribosomal, 16S/genetics , Neurodegenerative Diseases/complications , Olfaction Disorders/complications
5.
Nat Commun ; 14(1): 1349, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906612

ABSTRACT

Preterm infants with very low birthweight are at serious risk for necrotizing enterocolitis. To functionally analyse the principles of three successful preventive NEC regimens, we characterize fecal samples of 55 infants (<1500 g, n = 383, female = 22) longitudinally (two weeks) with respect to gut microbiome profiles (bacteria, archaea, fungi, viruses; targeted 16S rRNA gene sequencing and shotgun metagenomics), microbial function, virulence factors, antibiotic resistances and metabolic profiles, including human milk oligosaccharides (HMOs) and short-chain fatty acids (German Registry of Clinical Trials, No.: DRKS00009290). Regimens including probiotic Bifidobacterium longum subsp. infantis NCDO 2203 supplementation affect microbiome development globally, pointing toward the genomic potential to convert HMOs. Engraftment of NCDO 2203 is associated with a substantial reduction of microbiome-associated antibiotic resistance as compared to regimens using probiotic Lactobacillus rhamnosus LCR 35 or no supplementation. Crucially, the beneficial effects of Bifidobacterium longum subsp. infantis NCDO 2203 supplementation depends on simultaneous feeding with HMOs. We demonstrate that preventive regimens have the highest impact on development and maturation of the gastrointestinal microbiome, enabling the establishment of a resilient microbial ecosystem that reduces pathogenic threats in at-risk preterm infants.


Subject(s)
Gastrointestinal Microbiome , Infant, Premature , Infant , Infant, Newborn , Humans , Female , RNA, Ribosomal, 16S/genetics , Ecosystem , Intestines , Feces/microbiology , Bifidobacterium longum subspecies infantis/genetics
6.
Microbiome ; 9(1): 193, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34560884

ABSTRACT

BACKGROUND: Methane is an end product of microbial fermentation in the human gastrointestinal tract. This gas is solely produced by an archaeal subpopulation of the human microbiome. Increased methane production has been associated with abdominal pain, bloating, constipation, IBD, CRC or other conditions. Twenty percent of the (healthy) Western populations innately exhale substantially higher amounts (>5 ppm) of this gas. The underlying principle for differential methane emission and its effect on human health is not sufficiently understood. RESULTS: We assessed the breath methane content, the gastrointestinal microbiome, its function and metabolome, and dietary intake of one-hundred healthy young adults (female: n = 52, male: n = 48; mean age =24.1). On the basis of the amount of methane emitted, participants were grouped into high methane emitters (CH4 breath content 5-75 ppm) and low emitters (CH4 < 5 ppm). The microbiomes of high methane emitters were characterized by a 1000-fold increase in Methanobrevibacter smithii. This archaeon co-occurred with a bacterial community specialized on dietary fibre degradation, which included members of Ruminococcaceae and Christensenellaceae. As confirmed by metagenomics and metabolomics, the biology of high methane producers was further characterized by increased formate and acetate levels in the gut. These metabolites were strongly correlated with dietary habits, such as vitamin, fat and fibre intake, and microbiome function, altogether driving archaeal methanogenesis. CONCLUSIONS: This study enlightens the complex, multi-level interplay of host diet, genetics and microbiome composition/function leading to two fundamentally different gastrointestinal phenotypes and identifies novel points of therapeutic action in methane-associated disorders. Video Abstract.


Subject(s)
Methane , Methanobrevibacter , Adult , Animals , Female , Formates , Gastrointestinal Tract , Humans , Male , Metagenomics , Methanobrevibacter/genetics , Rumen , Young Adult
7.
Microbiome ; 9(1): 27, 2021 01 24.
Article in English | MEDLINE | ID: mdl-33487169

ABSTRACT

BACKGROUND: Human health is closely interconnected with its microbiome. Resilient microbiomes in, on, and around the human body will be key for safe and successful long-term space travel. However, longitudinal dynamics of microbiomes inside confined built environments are still poorly understood. Herein, we used the Hawaii Space Exploration Analog and Simulation IV (HI-SEAS IV) mission, a 1 year-long isolation study, to investigate microbial transfer between crew and habitat, in order to understand adverse developments which may occur in a future outpost on the Moon or Mars. RESULTS: Longitudinal 16S rRNA gene profiles, as well as quantitative observations, revealed significant differences in microbial diversity, abundance, and composition between samples of the built environment and its crew. The microbiome composition and diversity associated with abiotic surfaces was found to be rather stable, whereas the microbial skin profiles of individual crew members were highly dynamic, resulting in an increased microbiome diversity at the end of the isolation period. The skin microbiome dynamics were especially pronounced by a regular transfer of the indicator species Methanobrevibacter between crew members within the first 200 days. Quantitative information was used to track the propagation of antimicrobial resistance in the habitat. Together with functional and phenotypic predictions, quantitative and qualitative data supported the observation of a delayed longitudinal microbial homogenization between crew and habitat surfaces which was mainly caused by a malfunctioning sanitary facility. CONCLUSIONS: This study highlights main routes of microbial transfer, interaction of the crew, and origins of microbial dynamics in an isolated environment. We identify key targets of microbial monitoring, and emphasize the need for defined baselines of microbiome diversity and abundance on surfaces and crew skin. Targeted manipulation to counteract adverse developments of the microbiome could be a highly important strategy to ensure safety during future space endeavors. Video abstract.


Subject(s)
Astronauts , Extraterrestrial Environment , Microbiota , Skin/microbiology , Space Flight , Spacecraft , Adult , Built Environment , Female , Hawaii , Humans , Male , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
8.
Sci Rep ; 10(1): 16582, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024215

ABSTRACT

Squamous cell carcinoma is the most common type of throat cancer. Treatment options comprise surgery, radiotherapy, and/or chemo(immuno)therapy. The salivary microbiome is shaped by the disease, and likely by the treatment, resulting in side effects caused by chemoradiation that severely impair patients' well-being. High-throughput amplicon sequencing of the 16S rRNA gene provides an opportunity to investigate changes in the salivary microbiome in health and disease. In this preliminary study, we investigated alterations in the bacterial, fungal, and archaeal components of the salivary microbiome between healthy subjects and patients with head and neck squamous cell carcinoma before and close to the end point of chemoradiation ("after"). We enrolled 31 patients and 11 healthy controls, with 11 patients providing samples both before and after chemoradiation. Analysis revealed an effect on the bacterial and fungal microbiome, with a partial antagonistic reaction but no effects on the archaeal microbial community. Specifically, we observed an individual increase in Candida signatures following chemoradiation, whereas the overall diversity of the microbial and fungal signatures decreased significantly after therapy. Thus, our study indicates that the patient microbiome reacts individually to chemoradiation but has potential for future optimization of disease diagnostics and personalized treatments.


Subject(s)
Chemoradiotherapy , Head and Neck Neoplasms/microbiology , Head and Neck Neoplasms/therapy , Microbiota/drug effects , Microbiota/radiation effects , Saliva/microbiology , Squamous Cell Carcinoma of Head and Neck/microbiology , Squamous Cell Carcinoma of Head and Neck/therapy , Adult , Aged , Candida/genetics , Candida/isolation & purification , Female , Healthy Volunteers , High-Throughput Nucleotide Sequencing , Humans , Male , Microbiota/genetics , Middle Aged , RNA, Ribosomal, 16S/genetics
9.
BMC Biol ; 17(1): 87, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31699101

ABSTRACT

The human upper respiratory tract (URT) offers a variety of niches for microbial colonization. Local microbial communities are shaped by the different characteristics of the specific location within the URT, but also by the interaction with both external and intrinsic factors, such as ageing, diseases, immune responses, olfactory function, and lifestyle habits such as smoking. We summarize here the current knowledge about the URT microbiome in health and disease, discuss methodological issues, and consider the potential of the nasal microbiome to be used for medical diagnostics and as a target for therapy.


Subject(s)
Microbiota , Nose/microbiology , Respiratory Tract Infections/microbiology , Trachea/microbiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...